Moving the Camera

Lecture 13

Robb T. Koether
Hampden-Sydney College
Mon, Sep 23, 2019

Outline

(1) The Viewing Transformation
(2) Calculating the Eye Coordinates
(3) Moving the Camera

4 Assignment

Outline

(9) The Viewing Transformation

(2) Calculating the Eye Coordinates

(3) Moving the Camera

4) Assignment

The Viewing Transformation

The Viewing Transformation

The default camera

The Viewing Transformation

The Viewing Transformation

Translate the camera

The Viewing Transformation

The Viewing Transformation

Rotate the camera vertically (pitch)

The Viewing Transformation

The Viewing Transformation

Rotate the camera horizontally (yaw)

The Camera's Position

- The camera's position may be determined by three quantities.
- Pitch - angle tilting forward (up or down).
- Yaw - angle left or right.
- Distance - distance from the look point.
- Given pitch, yaw, and dist, how do we compute the x-, y-, and z-coordinates of the camera?

The Camera's Position

The Camera's Position

The eye (or camera) position, the look point, and up

The Camera's Position

The Camera's Position

The pitch, yaw, and dist

The Camera's Position

The Camera's Position

Let φ be the pitch and θ the yaw

Outline

(1) The Viewing Transformation

(2) Calculating the Eye Coordinates

(3) Moving the Camera

4 Assignment

Calculating the Camera's Coordinates

- The vertical distance (elevation, or y) from the $x z$-plane to eye is

dist $\cdot \sin \varphi$.

Calculating the Camera's Coordinates

- The vertical distance (elevation, or y) from the $x z$-plane to eye is

$$
\text { dist } \cdot \sin \varphi
$$

- The horizontal distance from look to directly under eye is

$$
\text { dist } \cdot \cos \varphi
$$

Calculating the Camera's Coordinates

- The vertical distance (elevation, or y) from the $x z$-plane to eye is

$$
\text { dist } \cdot \sin \varphi
$$

- The horizontal distance from look to directly under eye is

$$
\text { dist } \cdot \cos \varphi
$$

- Thus, the x coordinate is
$(d i s t \cdot \cos \varphi) \sin \theta$
and the z-coordinate is
$($ dist $\cdot \cos \varphi) \cos \theta$.

Calculating the Camera's Coordinates

Calculating the Camera's Coordinates

$$
\begin{gathered}
\text { eye }=\text { dist*vec3(cos(pitch)*sin(yaw), sin(pitch), } \\
\cos (\text { pitch }) \star \cos (y a w)) ;
\end{gathered}
$$

$$
\begin{aligned}
& x=\text { dist } \cdot \cos \varphi \sin \theta \\
& y=\text { dist } \cdot \sin \varphi \\
& z=\text { dist } \cdot \cos \varphi \cos \theta
\end{aligned}
$$

- This calculation of eye should be placed in the setView () function.

Outline

(1) The Viewing Transformation

(2) Calculating the Eye Coordinates

(3) Moving the Camera
4) Assignment

Moving the Camera

- To move the camera, we will modify yaw, pitch, and dist.
- We want the user interface to be simple and intuitive.
- Drag the mouse left or right to change yaw.
- Drag the mouse up or down to change pitch.
- Roll the mouse wheel to change dist.

The Yaw Angle

- For the yaw angle, let the width of the window represent 180°.
- Let old_x and old_y be where the mouse was last clicked, as reported by the mousebutton callback function (and later updated in the cursor position callback function).
- In the cursor position callback function, xpos and ypos will be the current coordinates.

The Yaw Angle

The Yaw Angle
float d_yaw $=$ (float) (xpos - old_x)/fb_width*180.0f; yaw += d_yaw;
old_x = xpos;

- Write similar code for pitch.

The Distance

- For the distance to the look point, let each click of the wheel represent a 5\% change.
- The change should be small enough that zooming appears to be smooth.
- A forward rotation will replace dist with dist/1.05f.
- A backward rotation will replace dist with $1.05 \mathrm{f} *$ dist.

The Distance

The Distance

```
if (yoffset > 0)
    dist /= 1.05f;
    else
    dist *= 1.05f;
```


Outline

(1) The Viewing Transformation

(2) Calculating the Eye Coordinates

(3) Moving the Camera

4 Assignment

Assignment

Assignment
 - Assignment 12.

